Zum Hauptinhalt springen

TAT-HUM: Trajectory analysis toolkit for human movements in Python.

Wang, XM ; Welsh, TN
In: Behavior research methods, Jg. 56 (2024-04-01), Heft 4, S. 4103-4129
academicJournal

Titel:
TAT-HUM: Trajectory analysis toolkit for human movements in Python.
Autor/in / Beteiligte Person: Wang, XM ; Welsh, TN
Zeitschrift: Behavior research methods, Jg. 56 (2024-04-01), Heft 4, S. 4103-4129
Veröffentlichung: 2010- : New York : Springer ; <i>Original Publication</i>: Austin, Tex. : Psychonomic Society, c2005-, 2024
Medientyp: academicJournal
ISSN: 1554-3528 (electronic)
DOI: 10.3758/s13428-024-02378-4
Schlagwort:
  • Humans
  • Biomechanical Phenomena
  • Programming Languages
  • Male
  • Movement physiology
  • Software
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Behav Res Methods] 2024 Apr; Vol. 56 (4), pp. 4103-4129. <i>Date of Electronic Publication: </i>2024 Mar 19.
  • MeSH Terms: Movement* / physiology ; Software* ; Humans ; Biomechanical Phenomena ; Programming Languages ; Male
  • References: Ayala, M. N., & Henriques, D. Y. (2021). Differential contributions of implicit and explicit learning mechanisms to various contextual cues in dual adaptation. PLoS One, 16(7), e0253948. (PMID: 342370828266054) ; Bartlett, R. (2014). Introduction to sports biomechanics: Analysing human movement patterns. Routledge. ; Bazarevsky, V., Grishchenko, I., Raveendran, K., Zhu, T., Zhang, F., & Grundmann, M. (2020). BlazePose: On-device Real-time Body Pose tracking. CoRR, abs/2006.10204. Retrieved from https://arxiv.org/abs/2006.10204 . Accessed 17 Oct 2022. ; Bingham, G. P., & Pagano, C. C. (1998). The necessity of a perception–action approach to definite distance perception: Monocular distance perception to guide reaching. Journal of Experimental Psychology: Human Perception and Performance, 24(1), 145. (PMID: 9483825) ; Bingham, G. P., Herth, R. A., Yang, P., Chen, Z., & Wang, X. M. (2022). Investigation of optical texture properties as relative distance information for monocular guidance of reaching. Vision Research, 196, 108029. (PMID: 35248890) ; Bingham, G. P., Wang, X. M., & Herth, R. A. (2023). Stable visually guided reaching does not require an internal feedforward model to compensate for internal delay: Data and model. Vision Research, 203, 108152. https://doi.org/10.1016/j.visres.2022.108152. (PMID: 10.1016/j.visres.2022.10815236442368) ; Bourgaize, S. M., McFadyen, B. J., & Cinelli, M. E. (2021). Collision avoidance behaviours when circumventing people of different sizes in various positions and locations. Journal of Motor Behavior, 53(2), 166–175. (PMID: 32188359) ; Brenner, E., & Smeets, J. B. (2019). How can you best measure reaction times? Journal of Motor Behavior, 51(5), 486–495. (PMID: 30358504) ; Butterworth, S. (1930). On the theory of filter amplifiers. Wireless Engineer, 7(6), 536–541. ; Cappello, A., La Palombara, P. F., & Leardini, A. (1996). Optimization and smoothing techniques in movement analysis. International Journal of Bio-Medical Computing, 41(3), 137–151. (PMID: 8872190) ; Chang, E., & Ro, T. (2005). Inhibition of return in perception and action. Visual Cognition, 12(3), 443–472. ; Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: Specification of multiple direction choices and final selection of action. Neuron, 45(5), 801–814. (PMID: 15748854) ; Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298. (PMID: 20345247) ; Donders, F. C. (1969). On the speed of mental processes. Acta Psychologica, 30, 412–431. (PMID: 5811531) ; Elliott, D., Hansen, S., Grierson, L. E., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136(6), 1023. (PMID: 20822209) ; Fagioli, S., Hommel, B., & Schubotz, R. I. (2007). Intentional control of attention: Action planning primes action-related stimulus dimensions. Psychological Research, 71, 22–29. (PMID: 16317565) ; Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146. (PMID: 10.3758/BF0319314617695343) ; Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149. (PMID: 10.3758/BRM.41.4.114919897823) ; Friesen, C. K., & Kingstone, A. (1998). The eyes have it! Reflexive orienting is triggered by nonpredictive gaze. Psychonomic Bulletin & Review, 5(3), 490–495. https://doi.org/10.3758/BF03208827. (PMID: 10.3758/BF03208827) ; Frischen, A., Bayliss, A. P., & Tipper, S. P. (2007). Gaze cueing of attention: Visual attention, social cognition, and individual differences. Psychological Bulletin, 133(4), 694–724. https://doi.org/10.1037/0033-2909.133.4.694. (PMID: 10.1037/0033-2909.133.4.694175929621950440) ; Gallivan, J. P., Chapman, C. S., Wolpert, D. M., & Flanagan, J. R. (2018). Decision-making in sensorimotor control. Nature Reviews Neuroscience, 19(9), 9. https://doi.org/10.1038/s41583-018-0045-9. (PMID: 10.1038/s41583-018-0045-9) ; Gallivan, J. P., & Chapman, C. S. (2014). Three-dimensional reach trajectories as a probe of real-time decision-making between multiple competing targets. Frontiers in Neuroscience, 8. https://doi.org/10.3389/fnins.2014.00215. ; Ghose, U., Srinivasan, A. A., Boyce, W. P., Xu, H., & Chng, E. S. (2020). PyTrack: An end-to-end analysis toolkit for eye tracking. Behavior Research Methods, 52, 2588–2603. (PMID: 325003647725757) ; Gram, J. P. (1883). Ueber die Entwickelung reeller Functionen in Reihen mittelst der Methode der kleinsten Quadrate. Journal für die Reine und Angewandte Mathematik, 94, 41–73. ; Grierson, L. E., Gonzalez, C., & Elliott, D. (2009). Kinematic analysis of early online control of goal-directed reaches: A novel movement perturbation study. Motor Control, 13(3), 280–296. (PMID: 19799166) ; Handlovsky, I., Hansen, S., Lee, T. D., & Elliott, D. (2004). The Ebbinghaus illusion affects on-line movement control. Neuroscience Letters, 366(3), 308–311. (PMID: 15288440) ; Heath, M., Westwood, D. A., & Binsted, G. (2004). The control of memory-guided reaching movements in peripersonal space. Motor Control, 8(1), 76–106. (PMID: 14973339) ; Heath, M., Rival, C., Neely, K., & Krigolson, O. (2006). Müller-Lyer figures influence the online reorganization of visually guided grasping movements. Experimental Brain Research, 169, 473–481. (PMID: 16292638) ; Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849–878. (PMID: 12239891) ; Howard, L. A., & Tipper, S. (1997). Hand deviations away from visual cues: Indirect evidence for inhibition. Experimental Brain Research, 113(1), 144–152. (PMID: 9028783) ; Howard, L. A., Lupiáñez, J., & Tipper, S. P. (1999). Inhibition of return in a selective reaching task: An investigation of reference frames. The Journal of General Psychology, 126(4), 421–442. (PMID: 10555868) ; Ishihara, M., Jacquin-Courtois, S., Flory, V., Salemme, R., Imanaka, K., & Rossetti, Y. (2006). Interaction between space and number representations during motor preparation in manual aiming. Neuropsychologia, 44(7), 1009–1016. (PMID: 16406028) ; Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138–147. (PMID: 10740278) ; Lanshammar, H. (1982). On precision limits for derivatives numerically calculated from noisy data. Journal of Biomechanics, 15(6), 459–470. (PMID: 7118960) ; Larssen, B., Greeley, B., & Boyd, L. (2023). Are bilateral motor planning impairments during reverse visually guided reaching evidence of cognitive-motor impairment or a motor control strategy among stroke survivors and older adults? Journal of Exercise, Movement, and Sport (SCAPPS Refereed Abstracts Repository), 54(1). ; Lee, D. (1999). Effects of exogenous and endogenous attention on visually guided hand movements. Cognitive Brain Research, 8(2), 143–156. (PMID: 10407203) ; Manzone, D. M., Manzone, J. X., Wang, X. M., Welsh, T. N., & Tremblay, L. (2023). Test Tube: On the Sensorimotor Costs of Virtual Environments. Journal of Exercise, Movement, and Sport (SCAPPS Refereed Abstracts Repository), 54(1). ; Nashed, J. Y., Crevecoeur, F., & Scott, S. H. (2012). Influence of the behavioral goal and environmental obstacles on rapid feedback responses. Journal of Neurophysiology, 108(4), 999–1009. (PMID: 22623483) ; Neyedli, H. F., & Welsh, T. N. (2012). The processes of facilitation and inhibition in a cue–target paradigm: Insight from movement trajectory deviations. Acta Psychologica, 139(1), 159–165. https://doi.org/10.1016/j.actpsy.2011.11.001. (PMID: 10.1016/j.actpsy.2011.11.00122133725) ; Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ..., & Cournapeau, D. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning, 12, 2825–2830. ; Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., ..., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203. (PMID: 307342066420413) ; Posner, M. I. (1980). Orienting of Attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25. https://doi.org/10.1080/00335558008248231. (PMID: 10.1080/003355580082482317367577) ; Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. Attention and Performance X: Control of Language Processes, 32, 531–556. ; Posner, M. I., Rafal, R. D., Choate, L. S., & Vaughan, J. (1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2(3), 211–228. ; Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129–154. ; Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis (2nd ed.). Springer. ; Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9(5), 347–356. ; Resulaj, A., Kiani, R., Wolpert, D. M., & Shadlen, M. N. (2009). Changes of mind in decision-making. Nature, 461(7261), 263–266. (PMID: 196930102875179) ; Rizzolatti, G., Riggio, L., Dascola, I., & Umiltá, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1), 31–40. (PMID: 3574648) ; Schmidt, E. (1989). Zur Theorie der linearen und nichtlinearen Integralgleichungen. In D. Hilbert, E. Schmidt, & A. Pietsch (Eds.), Integralgleichungen und Gleichungen mit unendlich vielen Unbekannten (pp. 190–233). Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-84410-1_3. (PMID: 10.1007/978-3-322-84410-1_3) ; Schoemann, M., O’Hora, D., Dale, R., & Scherbaum, S. (2021). Using mouse cursor tracking to investigate online cognition: Preserving methodological ingenuity while moving toward reproducible science. Psychonomic Bulletin & Review, 28(3), 766–787. ; Schreven, S., Beek, P. J., & Smeets, J. B. (2015). Optimising filtering parameters for a 3D motion analysis system. Journal of Electromyography and Kinesiology, 25(5), 808–814. (PMID: 26159504) ; Smeets, J. B., & Brenner, E. (1999). A new view on grasping. Motor Control, 3(3), 237–271. (PMID: 10409797) ; Söderkvist, I. (2009). Using SVD for some fitting problems. Retrieved from https://www.ltu.se/cms_fs/1.51590!/svd-fitting.pdf . Accessed 11 Jul 2022. ; Song, J.-H., & Nakayama, K. (2009). Hidden cognitive states revealed in choice reaching tasks. Trends in Cognitive Sciences, 13(8), 360–366. https://doi.org/10.1016/j.tics.2009.04.009. (PMID: 10.1016/j.tics.2009.04.00919647475) ; Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). Continuous attraction toward phonological competitors. Proceedings of the National Academy of Sciences, 102(29), 10393–10398. ; Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276–315. ; Tipper, S. P., Lortie, C., & Baylis, G. C. (1992). Selective reaching: Evidence for action-centered attention. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 891. (PMID: 1431753) ; Tsay, J. S., Kim, H., Haith, A. M., & Ivry, R. B. (2022). Understanding implicit sensorimotor adaptation as a process of proprioceptive re-alignment. Elife, 11, e76639. (PMID: 359694919377801) ; Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., ..., & Vázquez-Baeza, Y. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2. ; Wang, X. M., & Bingham, G. P. (2019). Change in effectivity yields recalibration of affordance geometry to preserve functional dynamics. Experimental Brain Research, 237(3), 817–827. (PMID: 30610264) ; Wang, X. M., Smith, D., & Zhu, Q. (2023). A webcam-based machine learning approach for the three-dimensional range of motion evaluation. PLoS ONE, 18(10), e0293178. https://doi.org/10.1371/journal.pone.0293178. ; Wang, X. M., Karlinsky, A., Constable, M. D., Gregory, S. E., & Welsh, T. N. (2024). Social gaze cueing elicits facilitatory and inhibitory effects on movement execution when the model might act on an object. Quarterly Journal of Experimental Psychology 77(2), 230–241. https://doi.org/10.1177/17470218231162546. ; Welsh, T. N. (2011). The relationship between attentional capture and deviations in movement trajectories in a selective reaching task. Acta Psychologica, 137(3), 300–308. (PMID: 21507363) ; Welsh, T. N., & Elliott, D. (2004). Movement trajectories in the presence of a distracting stimulus: Evidence for a response activation model of selective reaching. The Quarterly Journal of Experimental Psychology Section A, 57(6), 1031–1057. https://doi.org/10.1080/02724980343000666. (PMID: 10.1080/02724980343000666) ; Welsh, T. N., Elliott, D., & Weeks, D. J. (1999). Hand deviations toward distractors Evidence for response competition: Evidence for response competition. Experimental Brain Research, 127, 207–212. (PMID: 10442412) ; Whitwell, R. L., & Goodale, M. A. (2013). Grasping without vision: Time normalizing grip aperture profiles yields spurious grip scaling to target size. Neuropsychologia, 51(10), 1878–1887. (PMID: 23796704) ; Wispinski, N. J., Gallivan, J. P., & Chapman, C. S. (2020). Models, movements, and minds: Bridging the gap between decision making and action. Annals of the New York Academy of Sciences, 1464(1), 30–51. (PMID: 30312476) ; Wolpert, D. M. (1997). Computational approaches to motor control. Trends in Cognitive Sciences, 1(6), 209–216. (PMID: 21223909) ; Yoxon, E., Constable, M. D., & Welsh, T. N. (2019). Probing the time course of facilitation and inhibition in gaze cueing of attention in an upper-limb reaching task. Attention, Perception, & Psychophysics, 81(7), 2410–2423. https://doi.org/10.3758/s13414-019-01821-5. (PMID: 10.3758/s13414-019-01821-5)
  • Contributed Indexing: Keywords: Human movement analysis; Kinematic analysis; Python library; Spatial cueing paradigm; Trajectory analysis
  • Entry Date(s): Date Created: 20240320 Date Completed: 20240529 Latest Revision: 20240530
  • Update Code: 20240530

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -