Zum Hauptinhalt springen

Application of green tea extracts epigallocatechin-3-gallate in dental materials: Recent progress and perspectives.

Liao, S ; Tang, Y ; et al.
In: Journal of biomedical materials research. Part A, Jg. 108 (2020-12-01), Heft 12, S. 2395-2408
academicJournal

Titel:
Application of green tea extracts epigallocatechin-3-gallate in dental materials: Recent progress and perspectives.
Autor/in / Beteiligte Person: Liao, S ; Tang, Y ; Chu, C ; Lu, W ; Baligen, B ; Man, Y ; Qu, Y
Zeitschrift: Journal of biomedical materials research. Part A, Jg. 108 (2020-12-01), Heft 12, S. 2395-2408
Veröffentlichung: Hoboken, NJ : John Wiley & Sons, c2002-, 2020
Medientyp: academicJournal
ISSN: 1552-4965 (electronic)
DOI: 10.1002/jbm.a.36991
Schlagwort:
  • Catechin chemistry
  • Catechin therapeutic use
  • Humans
  • Anti-Bacterial Agents chemistry
  • Anti-Bacterial Agents therapeutic use
  • Antioxidants chemistry
  • Antioxidants therapeutic use
  • Cariostatic Agents chemistry
  • Cariostatic Agents therapeutic use
  • Catechin analogs & derivatives
  • Dental Caries drug therapy
  • Periodontal Diseases drug therapy
  • Plant Extracts chemistry
  • Plant Extracts therapeutic use
  • Tea chemistry
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't; Review
  • Language: English
  • [J Biomed Mater Res A] 2020 Dec; Vol. 108 (12), pp. 2395-2408. <i>Date of Electronic Publication: </i>2020 Jul 09.
  • MeSH Terms: Anti-Bacterial Agents* / chemistry ; Anti-Bacterial Agents* / therapeutic use ; Antioxidants* / chemistry ; Antioxidants* / therapeutic use ; Cariostatic Agents* / chemistry ; Cariostatic Agents* / therapeutic use ; Plant Extracts* / chemistry ; Plant Extracts* / therapeutic use ; Catechin / *analogs & derivatives ; Dental Caries / *drug therapy ; Periodontal Diseases / *drug therapy ; Tea / *chemistry ; Catechin / chemistry ; Catechin / therapeutic use ; Humans
  • References: Albuquerque, N., Neri, J. R., Lemos, M., Yamauti, M., deSousa, F., & Santiago, S. L. (2019). Effect of polymeric microparticles loaded with catechin on the physicochemical properties of an adhesive system. Operative Dentistry, 44, E202-e11. ; Aljateeli, M., Koticha, T., Bashutski, J., Sugai, J. V., Braun, T. M., Giannobile, W. V., & Wang, H. L. (2014). Surgical periodontal therapy with and without initial scaling and root planing in the management of chronic periodontitis: A randomized clinical trial. Journal of Clinical Periodontology, 41, 693-700. ; Babu, P. V., & Liu, D. (2008). Green tea catechins and cardiovascular health: An update. Current Medicinal Chemistry, 15, 1840-1850. ; Babu, P. V., Sabitha, K. E., & Shyamaladevi, C. S. (2006). Therapeutic effect of green tea extract on oxidative stress in aorta and heart of streptozotocin diabetic rats. Chemico-Biological Interactions, 162, 114-120. ; Bae, J. H., Kim, Y. K., Kim, S. G., Yun, P. Y., & Kim, J. S. (2010). Sinus bone graft using new alloplastic bone graft material (osteon)-II: Clinical evaluation. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 109, e14-e20. ; Bagis, B., Baltacioglu, E., Ozcan, M., & Ustaomer, S. (2011). Evaluation of chlorhexidine gluconate mouthrinse-induced staining using a digital colorimeter: An in vivo study. Quintessence International, 42, 213-223. ; Becker, W., Becker, B. E., Ochsenbein, C., Kerry, G., Caffesse, R., Morrison, E. C., & Prichard, J. (1988). A longitudinal study comparing scaling, osseous surgery and modified Widman procedures. Results after one year. Journal of Periodontology, 59, 351-365. ; Bicak, D. A. (2018). A current approach to halitosis and Oral malodor- a mini review. The Open Dentistry Journal, 12, 322-330. ; Bohner, M., Galea, L., & Doebelin, N. (2012). Calcium phosphate bone graft substitutes: Failures and hopes. Journal of the European Ceramic Society, 32, 2663-2671. ; Bolelli, G., Bellucci, D., Cannillo, V., Gadow, R., Killinger, A., Lusvarghi, L., … Sola, A. (2015). Comparison between suspension plasma sprayed and high velocity suspension flame sprayed bioactive coatings. Surface & Coatings Technology, 280, 232-249. ; Brackett, M. G., Li, N., Brackett, W. W., Sword, R. J., Qi, Y. P., Niu, L. N., … Tay, F. R. (2011). The critical barrier to progress in dentine bonding with the etch-and-rinse technique. Journal of Dentistry, 39, 238-248. ; Cano, A., Ettcheto, M., Chang, J. H., Barroso, E., Espina, M., Kuhne, B. A., … Garcia, M. L. (2019). Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer's disease mice model. Journal of Controlled Release, 301, 62-75. ; Caton, J., Nyman, S., & Zander, H. (1980). Histometric evaluation of periodontal surgery. II. Connective tissue attachment levels after four regenerative procedures. Journal of Clinical Periodontology, 7, 224-231. ; Chacko, S. M., Thambi, P. T., Kuttan, R., & Nishigaki, I. (2010). Beneficial effects of green tea: A literature review. Chinese Medicine, 5, 13. ; Chen, F. H., & Tuan, R. S. (2008). Mesenchymal stem cells in arthritic diseases. Arthritis Research & Therapy, 10, 223. ; Cho, A. R., Kim, J. H., Lee, D. E., Lee, J. S., Jung, U. W., Bak, E. J., … Choi, S. H. (2013). The effect of orally administered epigallocatechin-3-gallate on ligature-induced periodontitis in rats. Journal of Periodontal Research, 48, 781-789. ; Chow, Y. C., & Wang, H. L. (2010). Factors and techniques influencing peri-implant papillae. Implant Dentistry, 19, 208-219. ; Chowdhury, A., Sarkar, J., Chakraborti, T., Pramanik, P. K., & Chakraborti, S. (2016). Protective role of epigallocatechin-3-gallate in health and disease: A perspective. Biomedicine and Pharmacotherapy, 78, 50-59. ; Chu, C., Deng, J., Cao, C., Man, Y., & Qu, Y. (2017). Evaluation of Epigallocatechin-3-gallate modified collagen membrane and concerns on Schwann cells. BioMed Research International, 2017, 9641801. ; Chu, C., Deng, J., Hou, Y., Xiang, L., Wu, Y., Qu, Y., & Man, Y. (2017). Application of PEG and EGCG modified collagen-base membrane to promote osteoblasts proliferation. Materials Science & Engineering, C: Materials for Biological Applications, 76, 31-36. ; Chu, C., Deng, J., Man, Y., & Qu, Y. (2017). Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes. Materials Science & Engineering, C: Materials for Biological Applications, 78, 258-264. ; Chu, C., Deng, J., Xiang, L., Wu, Y., Wei, X., Qu, Y., & Man, Y. (2016). Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts. Materials Science & Engineering, C: Materials for Biological Applications, 67, 386-394. ; Chu, C., Liu, L., Wang, Y., Wei, S., Wang, Y., Man, Y., & Qu, Y. (2018). Macrophage phenotype in the epigallocatechin-3-gallate (EGCG)-modified collagen determines foreign body reaction. Journal of Tissue Engineering and Regenerative Medicine, 12, 1499-1507. ; Chu, C., Liu, L., Wang, Y., Yang, R., Hu, C., Rung, S., … Qu, Y. (2019). Evaluation of epigallocatechin-3-gallate (EGCG)-modified scaffold determines macrophage recruitment. Materials Science & Engineering, C: Materials for Biological Applications, 100, 505-513. ; Chu, P. Y., Tsai, S. C., Ko, H. Y., Wu, C. C., & Lin, Y. H. (2019). Co-delivery of natural compounds with a dual-targeted nanoparticle delivery system for improving synergistic therapy in an orthotopic tumor model. ACS Applied Materials & Interfaces, 11, 23880-23892. ; Costa, A., Naranjo, J. D., Londono, R., & Badylak, S. F. (2017). Biologic scaffolds. Cold Spring Harbor Perspectives in Medicine, 7(a025676), 1-23. https://doi.org/10.1101/cshperspect.a025676. ; Costa, C. A. G., Passos, V. F., Neri, J. R., Mendonca, J. S., & Santiago, S. L. (2019). Effect of metalloproteinase inhibitors on bond strength of a self-etching adhesive on erosively demineralized dentin. The Journal of Adhesive Dentistry, 21, 337-344. ; Crespy, V., & Williamson, G. (2004). A review of the health effects of green tea catechins in in vivo animal models. Journal of Nutrition, 134, 3431s-3440s. ; Dahlin, C., Sennerby, L., Lekholm, U., Linde, A., & Nyman, S. (1989). Generation of new bone around titanium implants using a membrane technique: An experimental study in rabbits. International Journal of Oral and Maxillofacial Implants, 4, 19-25. ; deMacedo, F. A. A., Souza, N. O., Lemos, M. V. S., De-Paula, D. M., Santiago, S. L., & Feitosa, V. P. (2019). Dentin bonding and physicochemical properties of adhesives incorporated with epigallocatechin-3-gallate. Odontology, 107, 23-28. ; dePablo, P., Chapple, I. L., Buckley, C. D., & Dietrich, T. (2009). Periodontitis in systemic rheumatic diseases. Nature Reviews Rheumatology, 5, 218-224. ; deSouza, E. S. C. M., da Silva Ventura, T. M., de Pau, L., la Silva, C., de Lima, L. A., & Buzalaf, M. A. R. (2017). Effect of gels containing chlorhexidine or epigallocatechin-3-gallate on the protein composition of the acquired enamel pellicle. Archives of Oral Biology, 82, 92-98. ; Demeule, M., Brossard, M., Page, M., Gingras, D., & Beliveau, R. (2000). Matrix metalloproteinase inhibition by green tea catechins. Biochimica et Biophysica Acta, 1478, 51-60. ; Deresinski, S. (2007). Principles of antibiotic therapy in severe infections: Optimizing the therapeutic approach by use of laboratory and clinical data. Clinical Infectious Diseases, 45(Suppl 3), S177-S183. ; Ding, J., Liang, T., Min, Q., Jiang, L., & Zhu, J. J. (2018). "Stealth and fully-laden" drug carriers: Self-assembled Nanogels encapsulated with epigallocatechin Gallate and siRNA for drug-resistant breast cancer therapy. ACS Applied Materials & Interfaces, 10, 9938-9948. ; Du, X., Huang, X., Huang, C., Wang, Y., & Zhang, Y. (2012). Epigallocatechin-3-gallate (EGCG) enhances the therapeutic activity of a dental adhesive. Journal of Dentistry, 40, 485-492. ; Edens, M. H., Khaled, Y., & Napenas, J. J. (2016). Intraoral pain disorders. Oral and Maxillofacial Surgery Clinics of North America, 28, 275-288. ; Farkas, O., Jakus, J., & Heberger, K. (2004). Quantitative structure-antioxidant activity relationships of flavonoid compounds. Molecules, 9, 1079-1088. ; Fialho, M. P. N., Hass, V., Nogueira, R. P., Franca, F. M. G., Turssi, C. P., Basting, R. T., & Amaral, F. L. B. (2019). Effect of epigallocatechin-3- gallate solutions on bond durability at the adhesive interface in caries-affected dentin. Journal of the Mechanical Behavior of Biomedical Materials, 91, 398-405. ; Fujibayashi, S., Nakamura, T., Nishiguchi, S., Tamura, J., Uchida, M., Kim, H. M., & Kokubo, T. (2001). Bioactive titanium: Effect of sodium removal on the bone-bonding ability of bioactive titanium prepared by alkali and heat treatment. Journal of Biomedical Materials Research, 56, 562-570. ; Fujibayashi, S., Neo, M., Kim, H. M., Kokubo, T., & Nakamura, T. (2004). Osteoinduction of porous bioactive titanium metal. Biomaterials, 25, 443-450. ; Glowacki, J., & Mizuno, S. (2008). Collagen scaffolds for tissue engineering. Biopolymers, 89, 338-344. ; Hajishengallis, G., & Lamont, R. J. (2012). Beyond the red complex and into more complexity: The polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Molecular Oral Microbiology, 27, 409-419. ; Hannas, A. R., Pereira, J. C., Granjeiro, J. M., & Tjaderhane, L. (2007). The role of matrix metalloproteinases in the oral environment. Acta Odontologica Scandinavica, 65, 1-13. ; Hara, E., Honda, Y., Suzuki, O., Tanaka, T., & Matsumoto, N. (2018). Epigallocatechin Gallate-modified gelatins with different compositions Alter the quality of regenerated bones. International Journal of Molecular Sciences, 19, 3232. ; Hara, K., Ohara, M., Hayashi, I., Hino, T., Nishimura, R., Iwasaki, Y., … Amano, H. (2012). The green tea polyphenol (−)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: Biochemical implications for oral health. European Journal of Oral Sciences, 120, 132-139. ; Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13, 572-584. ; Higuchi, T., Suzuki, N., Nakaya, S., Omagari, S., Yoneda, M., Hanioka, T., & Hirofuji, T. (2019). Effects of lactobacillus salivarius WB21 combined with green tea catechins on dental caries, periodontitis, and oral malodor. Archives of Oral Biology, 98, 243-247. ; Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Materials, 4, 518-524. ; Honda, Y., Takeda, Y., Li, P., Huang, A., Sasayama, S., Hara, E., … Tanaka, T. (2018). Epigallocatechin gallate-modified gelatin sponges treated by vacuum heating as a novel scaffold for bone tissue engineering. Molecules (Basel, Switzerland), 23, 876. ; Honda, Y., Tanaka, T., Tokuda, T., Kashiwagi, T., Kaida, K., Hieda, A., … Shimizutani, K. (2015). Local controlled release of polyphenol conjugated with gelatin facilitates bone formation. International Journal of Molecular Sciences, 16, 14143-14157. ; Hong, J. Y., Yon, J., Lee, J. S., Lee, I. K., Yang, C., Kim, M. S., … Jung, U. W. (2015). Effects of epigallocatechin-3-gallate on the healing of extraction sockets with a periapical lesion: A pilot study in dogs. Journal of Biomedical Materials Research: Part B, Applied Biomaterials, 103, 727-734. ; Hu, J., Du, X., Huang, C., Fu, D., Ouyang, X., & Wang, Y. (2013). Antibacterial and physical properties of EGCG-containing glass ionomer cements. Journal of Dentistry, 41, 927-934. ; Iwaya, S. I., Ikawa, M., & Kubota, M. (2001). Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dental Traumatology, 17, 185-187. ; Jiang, A., Liu, Y., Ma, L., Mao, F., Liu, L., Zhai, X., & Zhou, J. (2019). Biocompatible heat-shock protein inhibitor-delivered flowerlike short-wave infrared nanoprobe for mild temperature-driven highly efficient tumor ablation. ACS Applied Materials & Interfaces, 11, 6820-6828. ; Jin, P., Wu, H., Xu, G., Zheng, L., & Zhao, J. (2014). Epigallocatechin-3-gallate (EGCG) as a pro-osteogenic agent to enhance osteogenic differentiation of mesenchymal stem cells from human bone marrow: An in vitro study. Cell and Tissue Research, 356, 381-390. ; Jin, S., Park, J. Y., Hong, J. M., Kim, T. H., Shin, H. I., Park, E. K., & Kim, S. Y. (2011). Inhibitory effect of (−)-epigallocatechin gallate on titanium particle-induced TNF-α release and in vivo osteolysis. Experimental and Molecular Medicine, 43, 411-418. ; Kato, M. T., Leite, A. L., Hannas, A. R., & Buzalaf, M. A. (2010). Gels containing MMP inhibitors prevent dental erosion in situ. Journal of Dental Research, 89, 468-472. ; Katsumata, Y., Kanzaki, H., Honda, Y., Tanaka, T., Yamaguchi, Y., Itohiya, K., … Nakamura, Y. (2018). Single local injection of epigallocatechin Gallate-modified gelatin attenuates bone resorption and orthodontic tooth movement in mice. Polymers (Basel), 10(1384), 1-15. ; Kaufman, A. M., Alabre, C. I., Rubash, H. E., & Shanbhag, A. S. (2008). Human macrophage response to UHMWPE, TiAlV, CoCr, and alumina particles: Analysis of multiple cytokines using protein arrays. Journal of Biomedical Materials Research: Part A, 84, 464-474. ; Kim, H. S., Montana, V., Jang, H. J., Parpura, V., & Kim, J. A. (2013). Epigallocatechin gallate (EGCG) stimulates autophagy in vascular endothelial cells: A potential role for reducing lipid accumulation. Journal of Biological Chemistry, 288, 22693-22705. ; Kook, Y. J., Tian, J., Jeon, Y. S., Choi, M. J., Song, J. E., Park, C. H., … Khang, G. (2018). Nature-derived epigallocatechin gallate/duck's feet collagen/hydroxyapatite composite sponges for enhanced bone tissue regeneration. Journal of Biomaterials Science, Polymer Edition, 29, 984-996. ; Kostopoulos, L., & Karring, T. (1994). Augmentation of the rat mandible using guided tissue regeneration. Clinical Oral Implants Research, 5, 75-82. ; Kwon, Y. S., Kim, H. J., Hwang, Y. C., Rosa, V., Yu, M. K., & Min, K. S. (2017). Effects of epigallocatechin Gallate, an antibacterial cross-linking agent, on proliferation and differentiation of human dental pulp cells cultured in collagen scaffolds. Journal of Endodontics, 43, 289-296. ; Lagha, A. B., & Grenier, D. (2019). Tea polyphenols protect gingival keratinocytes against TNF-alpha-induced tight junction barrier dysfunction and attenuate the inflammatory response of monocytes/macrophages. Cytokine, 115, 64-75. ; Lagha, A. B., Groeger, S., Meyle, J., & Grenier, D. (2018). Green tea polyphenols enhance gingival keratinocyte integrity and protect against invasion by Porphyromonas gingivalis. Pathogens and Disease, 76(fty030), 1-9. ; Lampe, K. J., Bjugstad, K. B., & Mahoney, M. J. (2010). Impact of degradable macromer content in a poly(ethylene glycol) hydrogel on neural cell metabolic activity, redox state, proliferation, and differentiation. Tissue Engineering Part A, 16, 1857-1866. ; Lee, B. S., Lee, C. C., Lin, H. P., Shih, W. A., Hsieh, W. L., Lai, C. H., … Chen, Y. W. (2016). A functional chitosan membrane with grafted epigallocatechin-3-gallate and lovastatin enhances periodontal tissue regeneration in dogs. Carbohydrate Polymers, 151, 790-802. ; Lee, B. S., Lee, C. C., Wang, Y. P., Chen, H. J., Lai, C. H., Hsieh, W. L., & Chen, Y. W. (2016). Controlled-release of tetracycline and lovastatin by poly(D,L-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs. International Journal of Nanomedicine, 11, 285-297. ; Lessa, F. C., Aranha, A. M., Nogueira, I., Giro, E. M., Hebling, J., & Costa, C. A. (2010). Toxicity of chlorhexidine on odontoblast-like cells. Journal of Applied Oral Science, 18, 50-58. ; Lessa, F. C., Nogueira, I., Huck, C., Hebling, J., & Costa, C. A. (2010). Transdentinal cytotoxic effects of different concentrations of chlorhexidine gel applied on acid-conditioned dentin substrate. Journal of Biomedical Materials Research: Part B, Applied Biomaterials, 92, 40-47. ; Li, F., Wang, Y., Li, D., Chen, Y., Qiao, X., Fardous, R., … Dou, Q. P. (2018). Perspectives on the recent developments with green tea polyphenols in drug discovery. Expert Opinion on Drug Discovery, 13, 643-660. ; Li, P., Honda, Y., Arima, Y., Yasui, K., Inami, K., Nishiura, A., … Matsumoto, N. (2016). Interferon-gamma enhances the efficacy of autogenous bone grafts by inhibiting postoperative bone resorption in rat calvarial defects. Journal of Prosthodontic Research, 60, 167-176. ; Lim, E. S., Lim, M. J., Min, K. S., Kwon, Y. S., Hwang, Y. C., Yu, M. K., … Lee, K. W. (2016). Effects of epicatechin, a crosslinking agent, on human dental pulp cells cultured in collagen scaffolds. Journal of Applied Oral Science, 24, 76-84. ; Lin, S. Y., Kang, L., Chen, J. C., Wang, C. Z., Huang, H. H., Lee, M. J., … Lin, Y. S. (2019). Chen CH: (−)-Epigallocatechin-3-gallate (EGCG) enhances healing of femoral bone defect. Phytomedicine, 55, 165-171. ; Liu, J., Lu, Y., Liu, J., Jin, C., Meng, Y., & Pei, D. (2019). Influence of epigallocatechin-3-gallate in promoting proliferation and osteogenic differentiation of human periodontal ligament cells. BMC Oral Health, 19, 73. ; Lopes, R. G., Oliveira-Reis, B., Maluly-Proni, A. T., Silva, M. H. T., Briso, A. L. F., & Dos Santos, P. H. (2019). Influence of green tea extract in the color of composite resin restorations. Journal of the Mechanical Behavior of Biomedical Materials, 100, 103408. ; Madhurakkat Perikamana, S. K., Lee, S. M., Lee, J., Ahmad, T., Lee, M. S., Yang, H. S., & Shin, H. (2019). Oxidative epigallocatechin gallate coating on polymeric substrates for bone tissue regeneration. Macromolecular Bioscience, 19, e1800392. ; Mahoney, M. J., & Anseth, K. S. (2006). Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials, 27, 2265-2274. ; Malhotra, N., Mala, K., & Acharya, S. (2011). Resin-based composite as a direct esthetic restorative material. Compendium of Continuing Education in Dentistry, 32, 14-23 quiz 4, 38. ; Mankovskaia, A., Levesque, C. M., & Prakki, A. (2013). Catechin-incorporated dental copolymers inhibit growth of Streptococcus mutans. Journal of Applied Oral Science, 21, 203-207. ; Maruyama, T., Tomofuji, T., Endo, Y., Irie, K., Azuma, T., Ekuni, D., … Morita, M. (2011). Supplementation of green tea catechins in dentifrices suppresses gingival oxidative stress and periodontal inflammation. Archives of Oral Biology, 56, 48-53. ; Mazzoni, A., Tjaderhane, L., Checchi, V., Di Lenarda, R., Salo, T., Tay, F. R., … Breschi, L. (2015). Role of dentin MMPs in caries progression and bond stability. Journal of Dental Research, 94, 241-251. ; McKay, D. L., & Blumberg, J. B. (2002). The role of tea in human health: An update. Journal of the American College of Nutrition, 21, 1-13. ; Merkel, K. D., Erdmann, J. M., McHugh, K. P., Abu-Amer, Y., Ross, F. P., & Teitelbaum, S. L. (1999). Tumor necrosis factor-alpha mediates orthopedic implant osteolysis. American Journal of Pathology, 154, 203-210. ; Miyata, T., Taira, T., & Noishiki, Y. (1992). Collagen engineering for biomaterial use. Clinical Materials, 9, 139-148. ; Mizooku, Y., Yoshikawa, M., Tsuneyoshi, T., & Arakawa, R. (2003). Analysis of oxidized epigallocatechin gallate by liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 17, 1915-1918. ; Morin, M. P., Bedran, T. B., Fournier-Larente, J., Haas, B., Azelmat, J., & Grenier, D. (2015). Green tea extract and its major constituent epigallocatechin-3-gallate inhibit growth and halitosis-related properties of Solobacterium moorei. BMC Complementary and Alternative Medicine, 15, 48. ; Morinobu, A., Biao, W., Tanaka, S., Horiuchi, M., Jun, L., Tsuji, G., … Kurosaka, M. (2008). Kumagai S: (−)-Epigallocatechin-3-gallate suppresses osteoclast differentiation and ameliorates experimental arthritis in mice. Arthritis and Rheumatism, 58, 2012-2018. ; Nakamuta, M., Higashi, N., Kohjima, M., Fukushima, M., Ohta, S., Kotoh, K., … Enjoji, M. (2005). Epigallocatechin-3-gallate, a polyphenol component of green tea, suppresses both collagen production and collagenase activity in hepatic stellate cells. International Journal of Molecular Medicine, 16, 677-681. ; Nakanishi, T., Mukai, K., Yumoto, H., Hirao, K., Hosokawa, Y., & Matsuo, T. (2010). Anti-inflammatory effect of catechin on cultured human dental pulp cells affected by bacteria-derived factors. European Journal of Oral Sciences, 118, 145-150. ; Namal Senanayake, S. P. J. (2013). Green tea extract: Chemistry, antioxidant properties and food applications - A review. Journal of Functional Foods, 5, 1529-1541. ; Namba, R. M., Cole, A. A., Bjugstad, K. B., & Mahoney, M. J. (2009). Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension. Acta Biomaterialia, 5, 1884-1897. ; Narotzki, B., Reznick, A. Z., Aizenbud, D., & Levy, Y. (2012). Green tea: A promising natural product in oral health. Archives of Oral Biology, 57, 429-435. ; Neri, J. R., Yamauti, M., Feitosa, V. P., Pires, A. P., Araujo Rdos, S., & Santiago, S. L. (2014). Physicochemical properties of a methacrylate-based dental adhesive incorporated with epigallocatechin-3-gallate. Brazilian Dental Journal, 25, 528-531. ; Nishiguchi, S., Nakamura, T., Kobayashi, M., Kim, H.-M., Miyaji, F., & Kokubo, T. (1999). The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials, 20, 491-500. ; Oliveira-Reis, B., Maluly-Proni, A. T., Fagundes, T. C., Vasconcelos, G., Bresciani, E., Prakki, A., & Dos Santos, P. H. (2019). Influence of protease inhibitors on the degradation of sound, sclerotic and caries-affected demineralized dentin. Journal of the Mechanical Behavior of Biomedical Materials, 97, 1-6. ; Park, S. J., Li, Z., Hwang, I. N., Huh, K. M., & Min, K. S. (2013). Glycol chitin-based thermoresponsive hydrogel scaffold supplemented with enamel matrix derivative promotes odontogenic differentiation of human dental pulp cells. Journal of Endodontics, 39, 1001-1007. ; Pashley, D. H., Tay, F. R., Yiu, C., Hashimoto, M., Breschi, L., Carvalho, R. M., & Ito, S. (2004). Collagen degradation by host-derived enzymes during aging. Journal of Dental Research, 83, 216-221. ; Pela, V. T., Prakki, A., Wang, L., Ventura, T. M. S., deSouza, E. S. C. M., Cassiano, L. P. S., … Buzalaf, M. A. R. (2019). The influence of fillers and protease inhibitors in experimental resins in the protein profile of the acquired pellicle formed in situ on enamel-resin specimens. Archives of Oral Biology, 108, 104527. ; Petersen, P. E., & Ogawa, H. (2005). Strengthening the prevention of periodontal disease: The WHO approach. Journal of Periodontology, 76, 2187-2193. ; Petrino, J. A., Boda, K. K., Shambarger, S., Bowles, W. R., & McClanahan, S. B. (2010). Challenges in regenerative endodontics: A case series. Journal of Endodontics, 36, 536-541. ; Pihlstrom, B. L., Michalowicz, B. S., & Johnson, N. W. (2005). Periodontal diseases. Lancet, 366, 1809-1820. ; Prakki, A., Xiong, Y., Bortolatto, J., Goncalves, L. L., Bafail, A., Anderson, G., & Stavroullakis, A. T. (2018). Functionalized epigallocatechin gallate copolymer inhibit dentin matrices degradation: Mechanical, solubilized telopeptide and proteomic assays. Dental Materials, 34, 1625-1633. ; Raut, S. A., & Angus, R. A. (2010). Triclosan has endocrine-disrupting effects in male western mosquitofish, Gambusia affinis. Environmental Toxicology and Chemistry, 29, 1287-1291. ; Ravi, S., & Chaikof, E. L. (2010). Biomaterials for vascular tissue engineering. Regenerative Medicine, 5, 107-120. ; Raza, M. R., Sulong, A. B., Muhamad, N., Akhtar, M. N., & Rajabi, J. (2015). Effects of binder system and processing parameters on formability of porous Ti/HA composite through powder injection molding. Materials & Design, 87, 386-392. ; Rodriguez, R., Kondo, H., Nyan, M., Hao, J., Miyahara, T., Ohya, K., & Kasugai, S. (2011). Implantation of green tea catechin alpha-tricalcium phosphate combination enhances bone repair in rat skull defects. Journal of Biomedical Materials Research: Part B, Applied Biomaterials, 98, 263-271. ; Sakai, G., Otsuka, T., Fujita, K., Kainuma, S., Kuroyanagi, G., Kawabata, T., … Tokuda, H. (2017). Amplification by ()epigallocatechin gallate of prostaglandin F2alphastimulated synthesis of osteoprotegerin in osteoblasts. Molecular Medicine Reports, 16, 6376-6381. ; Sasayama, S., Hara, T., Tanaka, T., Honda, Y., & Baba, S. (2018). Osteogenesis of multipotent progenitor cells using the epigallocatechin Gallate-modified gelatin sponge scaffold in the rat congenital cleft-jaw model. International Journal of Molecular Sciences, 19(3803), 1-16. ; Scaffa, P. M., Vidal, C. M., Barros, N., Gesteira, T. F., Carmona, A. K., Breschi, L., … Carrilho, M. R. (2012). Chlorhexidine inhibits the activity of dental cysteine cathepsins. Journal of Dental Research, 91, 420-425. ; Seo, Y., Leong, J., Teo, J. Y., Mitchell, J. W., Gillette, M. U., Han, B., … Kong, H. (2017). Active antioxidizing particles for on-demand pressure-driven molecular release. ACS Applied Materials & Interfaces, 9, 35642-35650. ; Sheikh, F. A., Ju, H. W., Moon, B. M., Lee, O. J., Kim, J. H., Park, H. J., … Park, C. H. (2016). Hybrid scaffolds based on PLGA and silk for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 10, 209-221. ; Shen, Y., Zhao, J., de laFuente-Nunez, C., Wang, Z., Hancock, R. E., Roberts, C. R., … Wang, Q. (2016). Experimental and theoretical investigation of multispecies oral biofilm resistance to chlorhexidine treatment. Scientific Reports, 6, 27537. ; Shin, Y. S., Seo, J. Y., Oh, S. H., Kim, J. H., Kim, S. T., Park, Y. B., & Moon, H. S. (2014). The effects of ErhBMP-2-/EGCG-coated BCP bone substitute on dehiscence around dental implants in dogs. Oral Diseases, 20, 281-287. ; Spagnuolo, G., Annunziata, M., & Rengo, S. (2004). Cytotoxicity and oxidative stress caused by dental adhesive systems cured with halogen and LED lights. Clinical Oral Investigations, 8, 81-85. ; Taylor, P. W., Hamilton-Miller, J. M. T., & Stapleton, P. D. (2005). Antimicrobial properties of green tea catechins. Food Science and Technology Bulletin, 2, 71-81. ; Tierney, C. M., Haugh, M. G., Liedl, J., Mulcahy, F., Hayes, B., & O'Brien, F. J. (2009). The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2, 202-209. ; Tominari, T., Matsumoto, C., Watanabe, K., Hirata, M., Grundler, F. M., Miyaura, C., & Inada, M. (2015). Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced inflammatory bone resorption, and protects against alveolar bone loss in mice. FEBS Open Bio, 5, 522-527. ; Tonelli, P., Duvina, M., Barbato, L., Biondi, E., Nuti, N., Brancato, L., & Rose, G. D. (2011). Bone regeneration in dentistry. Clinical Cases in Mineral and Bone Metabolism, 8, 24-28. ; Tsuruta, M., Takahashi, T., Tokunaga, M., Iwasaki, M., Kataoka, S., Kakuta, S., … Ansai, T. (2017). Relationships between pathologic subjective halitosis, olfactory reference syndrome, and social anxiety in young Japanese women. BMC Psychology, 5(7), 1-8. ; Van Meerbeek, B., De Munck, J., Yoshida, Y., Inoue, S., Vargas, M., Vijay, P., … Vanherle, G. (2003). Buonocore memorial lecture. Adhesion to enamel and dentin: Current status and future challenges. Operative Dentistry, 28, 215-235. ; Wang, H. L., & Boyapati, L. (2006). "PASS" principles for predictable bone regeneration. Implant Dentistry, 15, 8-17. ; Wei, Y. J., Tsai, K. S., Lin, L. C., Lee, Y. T., Chi, C. W., Chang, M. C., … Hung, S. C. (2011). Catechin stimulates osteogenesis by enhancing PP2A activity in human mesenchymal stem cells. Osteoporosis International, 22, 1469-1479. ; Wu, C. D., & Wei, G. X. (2002). Tea as a functional food for oral health. Nutrition, 18, 443-444. ; Xu, C., Lei, C., Meng, L., Wang, C., & Song, Y. (2012). Chitosan as a barrier membrane material in periodontal tissue regeneration. Journal of Biomedical Materials Research: Part B, Applied Biomaterials, 100, 1435-1443. ; Xu, X., Zhou, X. D., & Wu, C. D. (2010). Tea Catechin EGCg suppresses the mgl gene associated with halitosis. Journal of Dental Research, 89, 1304-1308. ; Xu, X., Zhou, X. D., & Wu, C. D. (2011). The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrobial Agents and Chemotherapy, 55, 1229-1236. ; Yang, W. H., Deng, Y. T., Kuo, M. Y., Liu, C. M., Chang, H. H., & Chang, J. Z. (2013). Epigallocatechin-3-gallate blocks triethylene glycol dimethacrylate-induced cyclooxygenase-2 expression by suppressing extracellular signal-regulated kinase in human dental pulp and embryonic palatal mesenchymal cells. Journal of Endodontics, 39, 1407-1412. ; Yu, J., Yang, H., Li, K., Ren, H., Lei, J., & Huang, C. (2017). Development of Epigallocatechin-3-gallate-encapsulated Nanohydroxyapatite/mesoporous silica for therapeutic Management of Dentin Surface. ACS Applied Materials & Interfaces, 9, 25796-25807. ; Zarella, B. L., Buzalaf, M. A., Kato, M. T., Hannas, A. R., Salo, T., Tjaderhane, L., & Prakki, A. (2016). Cytotoxicity and effect on protease activity of copolymer extracts containing catechin. Archives of Oral Biology, 65, 66-71. ; Zeng, Q. C., Wu, A. Z., & Pika, J. (2010). The effect of green tea extract on the removal of sulfur-containing oral malodor volatiles in vitro and its potential application in chewing gum. Journal of Breath Research, 4, 036005. ; Zhang, J., Nie, S., Zu, Y., Abbasi, M., Cao, J., Li, C., … Wang, S. (2019). Anti-atherogenic effects of CD36-targeted epigallocatechin gallate-loaded nanoparticles. Journal of Controlled Release, 303, 263-273. ; Zhu, J., & Marchant, R. E. (2011). Design properties of hydrogel tissue-engineering scaffolds. Expert Review of Medical Devices, 8, 607-626. ; Zhu, S., Zhu, L., Yu, J., Wang, Y., & Peng, B. (2019). Anti-osteoclastogenic effect of epigallocatechin gallate-functionalized gold nanoparticles in vitro and in vivo. International Journal of Nanomedicine, 14, 5017-5032.
  • Contributed Indexing: Keywords: EGCG; dental materials; green tea
  • Substance Nomenclature: 0 (Anti-Bacterial Agents) ; 0 (Antioxidants) ; 0 (Cariostatic Agents) ; 0 (Plant Extracts) ; 0 (Tea) ; 8R1V1STN48 (Catechin) ; BQM438CTEL (epigallocatechin gallate)
  • Entry Date(s): Date Created: 20200508 Date Completed: 20211108 Latest Revision: 20211108
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -